Hippocampal CA1 pyramidal neurons exhibit type 1 phase-response curves and type 1 excitability.

نویسندگان

  • Shuoguo Wang
  • Maximilian M Musharoff
  • Carmen C Canavier
  • Sonia Gasparini
چکیده

Phase-resetting properties of neurons determine their functionality as integrators (type 1) vs. resonators (type 2), as well as their synchronization tendencies. We introduce a novel, bias-correction method to estimate the infinitesimal phase-resetting curve (iPRC) and confirm type 1 excitability in hippocampal pyramidal CA1 neurons in vitro by two independent methods. First, PRCs evoked using depolarizing pulses consisted only of advances, consistent with type 1. Second, the frequency/current (f/I) plots showed no minimum frequency, again consistent with type 1. Type 1 excitability was also confirmed by the absence of a resonant peak in the interspike interval histograms derived from the f/I data. The PRC bias correction assumed that the distribution of noisy phase resetting is truncated, because an input cannot advance a spike to a point in time before the input (the causal limit) and successfully removed the statistical bias for delays in the null PRC in response to zero-magnitude input by computing the phase resetting as the mean of the untruncated distribution. The PRC for depolarization peaked at late phases and decreased to zero by the end of the cycle, whereas delays observed in response to hyperpolarization increased monotonically. The bias correction did not affect this difference in shape, which was due instead to the causal limit obscuring the iPRC for depolarization but not hyperpolarization. Our results suggest that weak periodic hyperpolarizing drive can theoretically entrain CA1 pyramidal neurons at any phase but that strong excitation will preferentially phase-lock them with zero time lag.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Effect of repeated transcranial magnetic stimulation during epileptogenesis on spontaneous activity of hippocampal CA1 pyramidal neurons in rats

Introduction: Considering the antiepileptogenic effects of repeated transcranial magnetic stimulation (rTMS), the effect of rTMS applied during amygdala kindling on spontaneous activity of hippocampal CA1 pyramidal neurons was investigated. Materials and Methods: A tripolar electrode was inserted in basolateral amygdala of Male Wistar rats. After a recovery period, animals received daily kindl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 109 11  شماره 

صفحات  -

تاریخ انتشار 2013